V Ter	st corrections as a take home, Homework Quiz, a Mon. 1/14
The problem is irrelevant!	GoodWorkShown.pdf
oblem solving techniques: REAK THE PROBLEM DOWN - produ rite down the steps - make a plan	uct rule
emmunicate to others as mathematical notation correctly - for hat do I need? What do I have? More	proes you to think ware they connected? What step can I take?
Coming up: Kinematics Ch 17 Quiz - Wed, 1	l/9 Chapter
Areas under curves & integration Applications of integration President's Day	Applications of differential calculus
Discrete Random Variables	A Kinematics B Rates of change
Continuous Random Variables	C Optimisation Applications of differential coloring
Objectives	17A.1: #2-4 (Kinematics) 17A.2: #6-9 (Velocity & Acceleration)
 Use derivatives to solve problems inv motion. 	Ching 17B: #1-16 by 3 (Rates of change) OB #3,4,12 Test Corrections (Due Monday, 1/14)
Consider the height of a ball thrown	up from the top of a 60 foot building at an initial
h(f):	$= -16t^2 + 12t + 60$
The change of position over time is a	also known as velocity. Velocity = $\frac{\Delta Position}{\Delta Time}$
Using derivatives, we can find instan	taneous velocity by letting ∆Time → 0
Instantaneous Velocity -	m d[Time] = d(Time) = d(= n(i)
is 12 ft/sec (the initial speed!) and the 32 ft/sec every second!	 at the velocity increases (in a downward direction)
That change in velocity with respe second derivative of position (in this	ct to time is called acceleration. It is also the s case height) with respect to time.
Instantaneous Acceleration	= $\lim_{n \to \infty} \frac{\Delta Velocity}{dt} = \frac{d(Velocity)}{dt} = \frac{d^2h}{dt} = h^2(h)$
	Line+ ΔTime d(Time) dt tv
In the above example, the accelerati Notice the positions of the superscrip	on is simply, -32 ft/sec ² - gravity! ots in Leibnitz notation - the reasoning for this
will become apparent later. It is read Recall that $f'(x)$ or $f^{2}(x)$ is the secon	d "dee-two h dee-tee squared" ad derivative of f with respect to x. It represents
the slope of the slope" or the curva A stone is projected vertically so that	zure of f. In a motion context, f'(f) is acceleration t its position above ground level after
t seconds is given by $s(t) = 98t - 4$. a Find the velocity and acceleration	$9t^2$ metres, $t \ge 0$. functions for the stone and draw sign
diagrams for each function. b Find the initial position and veloci c Describe the storage section of the sto	ity of the stone. $s_t = 5$ and $t = 12$ seconds
 d Find the maximum height reached e Find the time taken for the stone t 	by the stone.
a) v(1) = 98 - 9.82 a(0) = -9.8 b) a(0) = 0 m above ground; v(0) = 98	m/sec upward
c) a(5) = 368 ft above ground; v(5) = 49 a(12) = 470 ft above ground; v(12) = - ¹ dt) a(12 = 98 - 9.82 = 0 when t = 10 sec. and	misec upward a(5) = -9.8 misec' slowing 19.6 misec (down) a(5) = -9.8 misec' speeding up v channes sim at L = 10 - max haidd is s(10) a 400 ft shows or
 (i) = 0 when \$81 - 4.92 = 0 or 4.98(20 - The values of position, veloc 	 0 so store hits at t = 20. Symmetry also works since s(0) = city, and acceleration at t = 0 are called the
In Another common context is motion a and acceleration of an object on the	itial conditions. along a straight line. Consider the location, veloci end of a spring for example.
Position Agiven problem involves an original sector of the sect	in. It is generally the position of the object at t = 0
aways). Know where it is in a gri position of the spring at rest or it is some support.	can be the location where the spring is attached to can be the location where the spring is attached to
 Displacement (often we use the a vector as it has magnitude and between displacement and distant 	letter s) is the signed distance from the origin. I direction relative to the origin. Note the distinction was travelled
 Position can be considered as a Watch carefully when this word is 	point (scalar) or as a displacement from 0 (vector used.
Velocity	
Velocity Average velocity is the net chang <u>Aposition</u>	ge in position divided by elapsed time. $s(t_2) - s(t_1)$
Velocity · Average velocity is the net chang <u>∆position</u> <u>∆time</u> Note that velocity is also a vector	ge in position divided by elapsed time. $\frac{s(t_2) - s(t_1)}{t_2 - t_1}$ rate in the solution and magnitude relative to the
Velocity · Average velocity is the net chan <u>Aposition</u> <u>Atime</u> · Note that velocity is also a vector origin. Speed, on the other hand, Instantaneous velocity is the inst	ge in position divided by elapsed time. $\frac{g(t_2) - g(t_1)}{t_2 - t_1}$ are it has direction and magnitude relative to the is a scalar - the magnitude of velocity.
Velocity · Average velocity is the net champion of the set of t	ge in position divided by elapsed time. $\frac{u(t_2)-u(t_1)}{t_2-t_1}$ as at has direction and magnitude relative to the is a scalar- the magnitude of velocity, landanceous rate of change of displacement vs time $v(t_1)$
Velocity: Average velocity is the net chang Δtime^{-1} Note that velocity is also a vector origin. Speed, on the other hand, Instanceous velocity is the inst better known as: $v(t) = \frac{dt}{dt} = s$ Average acceleration is the net of	ge in position divided by elapsed time. $\frac{\underline{s}(\underline{s}) - \underline{s}(\underline{s})}{t_2 - t_1}$ $\frac{1}{t_2 - t_1}$ $\underline{s} = c_1 + s_2$ which can and magnitude relative to the is a casher - the magnitude of velocity. Introduced the term of the second of the second
Velocity $\frac{\Delta position}{\Delta time}$	ge is position divided by elapsed time. $\frac{g(f_{0})-g(f_{0})}{f_{0}-f_{0}}$ as it has direction and magnitude relative to the sa scalar + the magnitude of electric). In this direction, the directory of displacement vs time $\frac{g(f_{0})-g(f_{0})}{f_{0}-f_{0}}$ provided by elapsed time. $\frac{g(f_{0})-g(f_{0})}{f_{0}-f_{0}}$
Velocity Average velocity is the net cham <u>Appointion</u> . After Note the velocity is also a vector and the second second problem before income with $\frac{d}{dt} = s$ <u>Average acceleration</u> is also a vec	ge is position divided by elapsed time. $\frac{t(f_{1})-t(f_{1})}{f_{2}-f_{1}}$ as the direction and magnitude relative to the so-scalar to magnitude relative to the so-scalar to magnitude of electric), that the magnitude of electric direction and the so-scalar solution of the solution of
Velocity Average velocity is the net cham <u>Appointion</u> <u>Attine</u> Attine to the second problem to the second problem to the second problem the second problem the second problem <u>Average acceleration</u> is the net of <u>Average acceleration</u> is the net of <u>Average acceleration</u> is also a ver- to the that acceleration is also a ver- to the second problem Attine Note in the acceleration is also a ver- to the second problem Average Average acceleration is also a ver- to the second problem Attine Average	ge is position divided by elapsed time. $\frac{t(f_{0})-t(f_{0})}{f_{0}-f_{0}}$ $= 1 \text{ has direction and magnitude relative to the same time of displacement via time dimension and ela drange of displacement via time \frac{t}{t}(f_{0}) hange in velocity divided by elapsed time. \frac{t}{t}(f_{0})-t(f_{0}) displacement via time dimension and magnitude relative to 1 a simulation scale to drange of displacement via time \frac{t}{t}(f_{0})-t(f_{0})$
Velocity A verage velocity is the net chan <u>Appointion</u> . <u>Antime</u> Mote the velocity is also a vector sector that the other hand. Instantaneous velocity is the inst of <u>Aveological the other hand</u> . <u>Aveological the net of <u>Aveological Constantion</u> is also a vector <u>Instantaneous acceleration is the batter insoma as</u> <u>Instantaneous Acceleration is the acceleration is the batter insoma as</u> <u>Instantaneous Acceleration is the acceleration in the batter insoma as</u> <u>Instantaneous Acceleration is the acceleration in the acceleration is the acceleration in the batter insoma as as and the acceleration is the acceleration in the acceleration is the acceleration in the acceleration is also as we have <u>Instantaneous Acceleration in the accelerat</u></u></u>	ge is position divided by elapsed time. $\frac{t(t)-t(t)}{t_c-t_1}$ $\frac{t(t)-t(t)}{t_c-t_1}$ $x = 1 but divided by elapsed time. If the magnitude of elapsed time. If the magnitude of elapsed time. If the magnitude of the magnitu$
Velocity Average velocity is the net chan <u>Aportion</u> <u>Aportion</u> <u>Aportion</u> <u>Aportion</u> <u>Aportion</u> <u>Aport Aport Aport</u>	ge is position divided by signed time. $\frac{t(s)-t(t)}{t_s-t_1}$ as a hard needed on any divided relative to the sa a scalar to a needed of the same of displacement variance. The angulation of displacement variance (training of displacement variance) (training of displacement varian
Velocity Average velocity is the net chan <u>Aposition</u> . <u>Aposto Aposto Ap</u>	ge is position divided by elapsed time. $\frac{t(j_{1})-t(j_{1})}{l_{1}-l_{1}}$ as a hard need of magnitude relative to the same that the second
Velocity Average velocity is the net change Average velocity is the net change Average velocity is the net in the magnetic sectors and the magnetic sectors are magnetic sectors are velocity is the net magnetic sectors are velocity and the magnetic sectors are magnetic sector	ge is position divided by signed time. $\frac{d(j-1)(j)}{l_1-l_1}$ as a hard received and magnitude relative to the same start hard received and magnitude relative to the same start hard received and magnitude relative to the instartaneous atter of charge of velocity to stime. $\frac{d(j-1)}{l_1-l_1}$ cerves at hard detection and magnitude relative to the instartaneous atter of charge of velocity to stime. $\frac{d(j-1)}{l_1-l_1}$ there are directions and the model hard hard the same start hard detection and there the two starts are the constraints of the velocity and accountation are different because the accountation and different because the accountation.
Velocity Average velocity is the net change Average velocity is the net change Automatical Note that velocity is the net of the Automatical Automatical mathematical Automatical Au	ge is position divided by elapsed time. $\frac{d(j)-d(j)}{l_{1}-l_{1}}$ are as the direction and magnitude relative to the same state of dranger of displacement vs time (line) the same state of dranger of displacement vs time (line) the same state of dranger of displacement vs time (line) the same state of the same stat
$\label{eq:constraints} \begin{array}{c} \Delta \mbox{constraints} \\ \Delta constra$	per la position divided by elapsed time. $\frac{d(j-1)(j)}{l_1-l_1}$ are the an electron and magnitude relative to the same state of a decision of elapse decision. The magnitude of elapse of displacement variation of the elapse of displacement variation $\frac{d}{d_1}(t) = \frac{d}{d_1}(t) = \frac{d}{d_1}(t)$ hange in velocity divided by elapsed time. $\frac{d}{d_1}(t) = \frac{d}{d_1}(t) = \frac{d}{d_1}(t) = \frac{d}{d_1}(t)$ deter sa that direction and magnitude relative to the instantaneous take of drange of velocity variations of the elapse of the same directions are theread. The same direction same theread is the same direction same the same direction same the same direction same theread is the same direction same direction same the same direction same direction same the same direction same directi
Velocity Average velocity is the net change of the second state	ge in position deided by eligned time. $\frac{q(j_1)-q(j_1)}{l_1-l_1}$ is a constrained range determination to the site of the same determination of th
Vectority Average vectorly is the net charm <u>Appriction</u> <u>Appriction</u> <u>Appriction</u> <u>Appriction</u> <u>Appriction</u> <u>Appriction</u> $(f) \in \frac{1}{2}$ $(f) \in \frac{1}{2}$ Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appriction Appri	ge in position divided by eligned time. $\frac{d(t_{i})-d(t_{i})}{t_{i}^{2}-t_{i}}$ is a constraint of any other angulate statistics to the site of a scalar - the magnitude ratio of the site of the sit
Vectoring A series of the sector of the se	ge in position divided by elapsed time. $\frac{a(t_{i})-a(t_{i})}{t_{i}^{i}-t_{i}}$ and the set of the set of angulate statistics of the set of th
Vectority Average vectority is the net char <u>Appendix of the second s</u>	ge in product which by elapsed time. $\frac{w(t_{i})-w(t_{i})}{t_{i}^{2}-t_{i}}$ and the second sequence of the second sequence of the second sec
Vectority A versage vectority is the red charg <u>Appriction</u> Aprice is predicting the red charg Appriction $Aprice is predicting the red charge Appriction = between the red charge Appriction Appriction = between the red charge Appriction Appriction = between the red charge Ap$	ge in product added by elapsed time. $\frac{q(j)-q(j)}{l_{1}^{2}-l_{1}}$ and the second sequence of the second sequence of the second seco
Vectority A versus vectority is the net chara <u>Appendent</u> Note that velocity is used as vectority in the velocity is the net of the <u>Appendent</u> Note that velocity is the net of the magnetic processors velocity is the net of the Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent Appendent A	get is position divided by signed time. $\frac{u(j-1)(j)}{l_{1}-l_{1}}$ where the divided by signed time is a case is the divided by signed time is the divided
Vectoring A strange vectoring is the net change A strange vectoring is the net change A strange vectoring is the set of the strange and the vectoring is a set of the strange vectoring is the set of the strange A strange vectoring is the set of the set of the strange vectoring is the set of the set o	get is position divided by signed limit. $\frac{g(t) - g(t)}{t_{1}^{2} - t_{1}^{2}}$ where the approximation of magnitude relations in the dividence of the second set of the se
Vectoring A decay and the set of the set o	ge is position deleded by aligned lime. $\frac{g(r_{0}^{2}-g(r_{0}^{2}))}{l_{0}^{2}-l_{0}^{2}}$ as the direction del magnitude relative to the site of th
Vectoring Average vectorly is the net change Average vectorly is the net change Average vectorly is the net change Average vectorly is the net of the Average vector is the net change average vector is the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the Average vector is the net of the net of the net of the Average vector is the net of the net of the net of the net of the Average vector is the net of the n	ge is position divided by signed lime. $\frac{g(r_{0}) - g(r_{0})}{r_{0}^{2} - r_{0}}$ as the divident of an apprichase relative to the set of the approximation of the order of the set of th
Vectoring A decision of the second	ge is position divided by signed lime. $\frac{g(r_{0})-g(r_{0})}{r_{0}^{2}-r_{0}}$ as the divident of an apprichase relative to the set of the apprichase of the control of the second set of the second set of the control of the second set of the control of the second set of the second set of the control of the second set
Vectoring A decision of the second	ge in position debded by eligned time. $\frac{g(g) - g(g)}{g - g}$ $\frac{g(g) - g(g)}{g - g}$ $\frac{g(g)}{g - g}$ $$
Vectoring A decay and vector is the net change A decay is a decay is the net change A decay is a decay of the decay is the interval of the interval is a second interval interval is a decay of the decay is the interval A second is a decay of the decay is the interval A decay is a decay of the decay is the interval A decay is a decay of the decay is the interval A decay is a decay of the decay is the interval A decay is a decay of the decay is the decay is a decay of the decay is a decay of the decay of the decay is a decay of the decay of the decay is a decay of the decay of the decay is a decay of the decay of t	ge in position divided by eligned time. $\frac{g(y_{1})-g(y_{1})}{(y_{1}-y_{1})}$ is the set of the set of any equivalent set of the se
Vectoring Average vectoring is the net change Average vectoring is the net change Average vectoring is the set of the set Average average vector is the net of the set average is a set of the net of the set Average average average vector is the net of the set Average average average vector is the net of the set Average average average vector is the net of the set Average average vector is the set of the set average vector is the set of the set average vector is the set of the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the vector is and the set is the set of the set of the set of the set is the set of the set of the set of the set is the set of the set of the set of the set of the set is the set of the	ge in problem divided by eligned time. $\frac{g(t_{i})-g(t_{i})}{t_{i}-t_{i}}$ the set of the sequence of angulade statistics for the set of the sequence of the
Vectoring A decay and the decity is the net charge A decay and the decity is also a vector in the decity is also a vector is also also also also also in the decity is also also is also also also is also also also is also i	ge in problem chicked by elapsed time. $\frac{g(t_{i})-g(t_{i})}{t_{i}-t_{i}}$ the set of an equivalent statistic to the in- site scalar - the more chick agriculture statistic to the in- site scalar - the more chick agriculture statistic to the in- $\frac{g(t_{i})-g(t_{i})}{t_{i}-t_{i}}$ through the velocity divided by elapsed time. $\frac{g(t_{i})-g(t_{i})-g(t_{i})}{t_{i}-t_{i}}$ the velocity divided by elapsed through the the set of the same divide by the statistic term of the same divide by the same divide by the same divide by the statistic term of the same divide by the sa
Vectoring Average vectoring is the net change Average vectoring is the net change Average vectoring is the set of the set Average average vector is the net of the set average vector is the set of the set is the set of the set of the set of the set Average vector is the set of the set of the set of the set is the set of the set of the set of the set of the set Average vector is the set of the set of the set of the set of the set Average vector is the set of the	ge in problem chicked by elapsed time. $\frac{a(j)_{-}}{c_{1}} + \frac{a(j)_{-}}{c_{1}} + \frac{a(j)_{-}} + \frac{a(j)_{-}}{c_{1$
Vectoring Average vectoring is the net change Average vectoring is the net change Average vectoring is the set of the Average is a speed on the other hand. Instantaneous vectoring is the net of the Average is a speed on the Average average is the net of the Average Average average vectoring is the average vectoring is the Average Average average vectoring is the Average average vectoring is the Average Average average vectoring is the Average vectoring is the Average Average vectoring is average vectoring in the Average Average average vectoring is average vectoring in the Average Average average vectoring is average vectoring in the Average vectoring is average vectoring in the Average avectoring in the Average avectoring in the Average average	ge in problem fulded by elspeed time. $\frac{a(j)_{-}}{c_{-}} + (j)_{-}}$ The full constraints of the set of the
Vectoring A decrease vectoring is the net change A decrease vectoring is the net change A decrease vectoring is the last of the decrease and the vectoring is decreased in the other hand. A sector decrease vectoring is the last of the decrease decreased and the decrease vectoring is the last of the decrease decreased and the decrease vectoring is the last of the decreased and the decrease vectoring is the last of the decrease vector decrease vector is the decrease vector decrease of the decrease vector decrease vector decrease of the decrease of the decrease vector decrease of the decrease of the decrease vector decrease of the decrease vector decrease of the decrease of	ge in problem fielded by elapsed time. $\frac{g(c) - g(c)}{c - \frac{1}{2}}$ The set of the angula detail of the set
Vectoring A decrease vectoring is the end chara A decrease A d	gen is position deleted by elapsed time. $\frac{w(t_{i}) - w(t_{i})}{t_{i} - t_{i}}$ The set is a dress into along of displacement is since the set is a constraint of the set is a const
Vectoring A decrease vectoring is the end chara A decrease A d	gen is position deleted by elapsed time. $\frac{w(t_{i}) - w(t_{i})}{t_{i} - t_{i}}$ The set is a dress into any other desception of the set is a second of the se
Vectoring A decrease vectoring is the net chara A decrease A d	gen is position divided by singued time. $\frac{w(c) - w(c)}{c_c - 1}$ \frac
Vectoring A decrease vector is the net chara A decrease A decrease vector is the net chara A decrease A decrease a decrease vector is the net chara A decrease a decrease vector is the net chara A decrease A decr	ge in position fidded by eliqued time. $\frac{g(t_{i})-g(t_{i})}{t_{i}-t_{i}}$ the state of the state of ange plot is table to the fit is the state of a state of the state of t

